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Separability by Hamilton and Jacobi

@ Consider Liouville integrable systems on symplectic manifold, given by
{hi,hj}x =0, i,j=1,...,n and related Hamiltonian systems
uy, = Xp, = mdh;, i=1,...n u=(qp)". (2.1)
@ Assume that (g, p) are canonical (Darboux) coordinates. HJ method
of solving (2.1) amounts to the linearization of (2.1) via a canonical
transformation
(g,p) — (b,a), a=h;, i=1..n (2.2)
@ In order to find b; it is necessary to construct a generating function
W (q, a) of transformation (2.2)
0w oW
T oa PT g

@ The function W(q, a) is an integral of associated HJ equations

b;
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Separability by Hamilton and Jacobi

@ In (b, a) representation dynamical systems (2.1) are trivial
(aj)t; =0, (bj)t,- = Jjj, ij=1,...n,

and W
bj(g.a) = =— =tj+¢j, j=1,....n (2.3)
aqj
e Eqs.(2.3) provide implicit solutions of (2.1) in oryginal coordinates.
Solving it for g we reconstruct in explicit form trajectories

gi = qi(t1, ..., tn, 31, ..., an, C1, ..., Cn)-

Inverse Jacobi problem.

@ Where is the hook? How to overcome it?
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Separability by Hamilton and Jacobi

e Find a distinguished Darboux coordinates (A, 1), for which there exist
n relations (separation relations)

go,-()\,-,]/t,-,al,...,a,,) :0, i = 1,...,n, (2.4)
a(p;
ai € R, ‘ 33, #0,

@ which can be solved with respect to a;:
a; = h,‘(/\, ]l),

reconstructing our Hamiltonians in new coordinates.

@ In fact one can prove that any set of algebraic equations (2.4) defines
a Lagrangian foliation of symplectic manifold.
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Separability by Hamilton and Jacobi

@ We are looking for a generating function W(A, a) of transformation
(A, ) — (b, a) in the form

W()\, a) = V\/,-(/\,-,al,...,a,,),

M-

1

where functions W; are solutions of a system of n decoupled ODEs

obtained from separation relations under substitution p; = ‘xvf

dW; .
q),-(/\,-,pt,-:d—/\i',al,...,a,,) :O, /:1,...,n.
@ Such an additively separable solution W (A, a) is simultanously the
solution of all Hamilton Jacobi equations. (A, u) coordinates are
called separation coordinates.
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Stackel systems and their classyfication

o Consider separation relations affine in Hamiltonians h;:

i SKAi pi)he = wi(Aj i), i=1,...n, (2.5)
k=1

called generalized Stickel separation relations. S = (Sf) -
generalized Stickel matrix, 1 = (¢;) - generalized Stickel vector.
o If Sl-k()\,', ]l,) = Sk(/\,', ‘Z/l,) and 1,0,'()\,‘, ]/l,) = l/)(/\,‘, ]l,'), then (2.5) can

be represented by n copies of the curve

n

Y SK(A )bk = (A, p) (2.6)

k=1
in (A, ) plane, called separation curve.

@ In particular, if (2.6) is nonsingular, compact Riemann Surface T,
then one can find genus of this curve, basic holomorfic differentials
and solve the inverse Jacobi problem in the language of Riemann
theta functions.
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Stackel systems and their classyfication

@ Let us write separation relations in the form

Z f( )L,,}/l [ (k )(/\,) + h(k)(/\,', nk)} = X;(/\,',]l,'), = 1, L Ny
- (2.7)
ng i
Dm) = Y WIAT m b= @P(Ap) =1
j=1

@ They split onto bare part
g k
Y. o (i) [E( YA, "k)] =xi(Aipi),  i=1,..n,
k=1
and generalized separable " potentials”

i PE (i) [0 A)0% 4 VI (Nym)] =0, i=1,m
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Stackel systems and their classyfication

e Basic potentials: ¢(5)(A) = A", r, € Z, s=1,...m. Then
hl(k) — Ei(k) + Z Vl-(k's'rS).

@ There are m hierarchies of basic potentials.

o Particular class - fixed Stackel matrix S and vector x. S is
determined uniquely by m vectors ¢k = (¢, ..., ¢¥), k=1,...,m
and the partition of n: (n1,..., nm).

@ Classical Stackel systems: one particle dynamics on pseudo-Riemann
space

Z [’Y(k i)+ h9(A;, nk)} = %f;()x;)y,?, i=1 .. n
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Stackel systems and their classyfication

@ Benenticlass: m=1

1
YA) + mAT L+ by = 57‘;()\;)#?, i=1,..n

h(A,n)

contains majority of known classical separable systems in flat or
constant curvature Riemann spaces, with all constants of motion
quadratic in momenta.

@ Other classes with m = 1:

fi(Ai)u?

)\I' h /\{)71 hn -
YA) + mAT 4+ {exp(ayi)-i-exp(_bl/‘i)

h(A,n)

Periodic Toda, KdV dressing chain, relativistic n - body problem, ...
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Stackel systems and their classyfication

@ The case with m =2
i [y D) + D) |+ [y P A + 5P (A )| = KA,

stationary flows of Bussinesq: n; = 1, np = n— 1, dynamical system
on loop algebra s/(3): ny =2, np =4.
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Classical Stackel systems

e (Q,g)— pseudo Riemann space and dynamical system

qit +T}kq£qf = GikakV(q), i=1,..n (2.8)

(i
. 9h oh 1 i
=g, (Pe=—g55 hlap)= 5 L6 pipi+ V(a).
i iJj

@ Assume that (2.8) is Liouville integrable with all constants of motion
quadratic in momenta:

1

he(q,p) = EZ(KrG)UPin +Vi(q), r=1..n,

iJ
where K1 = I, hy = h, K,— Killing tensors.

@ The transformation to separation coordinates (A, yt) is a point
transformation generated by
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Classical Stackel systems

v ;i OF _OF  00;i(A)
—12219:(/\>P::> q —TM—QI(A)r M'_a/\,- = Pi oA .

@ The explicit form of Hamiltonians in separation coordinates depends
on the form of separation relations.

o Example. Benenti class:

fi(Aj) o 9o, vi(Aj)

¢ A; o (Kr)J aA(S Vi Za)\, A;

@ where

Ar=TTi =)
kAi

and p, are Viete polynomials:

o1=—(A+ o+ An), s pn = (—1)"A1 A
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Classical Stackel systems

o Linearization in (b, a)— coordinates.
@ Consider subclasses

1
M+ mAT + AT + 4 hy = Ef,-()t,-)y,?, i=1,..,n (29)

@ and generating function
dW; ow

W(a, A) = ZVV,(A,,Q) — Ui= W' b; = g

@ Hence, from (2.9)

1 VV, 2 n
Zf (A7) <d ) =Af+ Y aAl"=P(A;,a)
r=1

2 dA;
U
n Aj Vi
bi:aW: /JM:U‘FC/, i=1,...,n
0aj j=1 Ri(¢, a)
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Classical Stackel systems

o where Rj(¢,a) = 2f;({)P(C, a), or in Abel-Jacobi differential form

n AldA;
Z =dtj, i=1..,n
J(/\J' a)

=1
o Examples.
@ Natural Hamiltonians of one-degree of freedom

1
h=—p?+ V(x). 2.1
Tl (x) (2.10)

(x, p) are separation coordinates and (2.10) itselve represents
separation relation.

o Take harmonic oscillator with V/(x) = 1ax?. Then

1 (dW\* 1 , / 1,
2[71(0’)() +§0(X =a = W—/ 2m(a—§txx )dX
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Classical Stackel systems

dw
et t+C:7:/
da

mdx m _ \/7
=/ aresiny/ 5ox
2m(a— %DCX2) a a
. 2a o
- x:Asm(wt+(p), A= ?, w = —, @ = wc.
m

e For potential V(x) = %rxxz — %,Bx4 the similar calculation gives

x = Asn(wt + ¢, k)

sinus eliptic function of Jacobi, where (A, w, k) are expressed by
(«, B, a) through

mpA® = 2KPw?, ma = WP (1+ k%), 2a=Aw® ¢=wc
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Classical Stackel systems

@ Henon-Heiles system (two degrees of freedom)

1 1 1
h=h =2pi+5p3+a+ 506,

hy = - L R BR Y
2 = 2CI2P1P2 2(71P2 q1Q2 16

@ Transformation to separation coordinates

A Ao
PL= A1 — Az +/\2—/\1'

@ =V —4MA2,  pr =V —MAs ( i SR > :

AM—Ay Ar—Aq

= A1+ Ao,
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Classical Stackel systems

@ Separation relations
1
hiAy + hy = 57\114% + A1
1
hiAs + hy = §A2y§ + A3,

@ Implicit solution in Abel-Jacobi form

) ArdAg Aad Ay
1 pu—

VR(A,a)  V/R(A2 )
dts dA dAs

= + ,
VR(A,a)  VR(Az2 )
where R(A, a) = ap + ajA — A%
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